RyanHub - file viewer
filename: external/cglm/affine-mat.h
branch: main
back to repo
/*
 * Copyright (c), Recep Aslantas.
 *
 * MIT License (MIT), http://opensource.org/licenses/MIT
 * Full license can be found in the LICENSE file
 */

/*
 Functions:
   CGLM_INLINE void glm_mul(mat4 m1, mat4 m2, mat4 dest);
   CGLM_INLINE void glm_mul_rot(mat4 m1, mat4 m2, mat4 dest);
   CGLM_INLINE void glm_inv_tr(mat4 mat);
 */

#ifndef cglm_affine_mat_h
#define cglm_affine_mat_h

#include "common.h"
#include "mat4.h"
#include "mat3.h"

#ifdef CGLM_SSE_FP
#  include "simd/sse2/affine.h"
#endif

#ifdef CGLM_AVX_FP
#  include "simd/avx/affine.h"
#endif

#ifdef CGLM_NEON_FP
#  include "simd/neon/affine.h"
#endif

#ifdef CGLM_SIMD_WASM
#  include "simd/wasm/affine.h"
#endif

/*!
 * @brief this is similar to glm_mat4_mul but specialized to affine transform
 *
 * Matrix format should be:
 *   R  R  R  X
 *   R  R  R  Y
 *   R  R  R  Z
 *   0  0  0  W
 *
 * this reduces some multiplications. It should be faster than mat4_mul.
 * if you are not sure about matrix format then DON'T use this! use mat4_mul
 *
 * @param[in]   m1    affine matrix 1
 * @param[in]   m2    affine matrix 2
 * @param[out]  dest  result matrix
 */
CGLM_INLINE
void
glm_mul(mat4 m1, mat4 m2, mat4 dest) {
#if defined(__wasm__) && defined(__wasm_simd128__)
  glm_mul_wasm(m1, m2, dest);
#elif defined(__AVX__)
  glm_mul_avx(m1, m2, dest);
#elif defined( __SSE__ ) || defined( __SSE2__ )
  glm_mul_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
  glm_mul_neon(m1, m2, dest);
#else
  float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
        a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
        a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
        a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],

        b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
        b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
        b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2],
        b30 = m2[3][0], b31 = m2[3][1], b32 = m2[3][2], b33 = m2[3][3];

  dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
  dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
  dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
  dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02;

  dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
  dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
  dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
  dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12;

  dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
  dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
  dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
  dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22;

  dest[3][0] = a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33;
  dest[3][1] = a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33;
  dest[3][2] = a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33;
  dest[3][3] = a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33;
#endif
}

/*!
 * @brief this is similar to glm_mat4_mul but specialized to affine transform
 *
 * Right Matrix format should be:
 *   R  R  R  0
 *   R  R  R  0
 *   R  R  R  0
 *   0  0  0  1
 *
 * this reduces some multiplications. It should be faster than mat4_mul.
 * if you are not sure about matrix format then DON'T use this! use mat4_mul
 *
 * @param[in]   m1    affine matrix 1
 * @param[in]   m2    affine matrix 2
 * @param[out]  dest  result matrix
 */
CGLM_INLINE
void
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest) {
#if defined(__wasm__) && defined(__wasm_simd128__)
  glm_mul_rot_wasm(m1, m2, dest);
#elif defined( __SSE__ ) || defined( __SSE2__ )
  glm_mul_rot_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
  glm_mul_rot_neon(m1, m2, dest);
#else
  float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
        a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
        a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
        a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],

        b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
        b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
        b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2];

  dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
  dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
  dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
  dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02;

  dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
  dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
  dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
  dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12;

  dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
  dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
  dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
  dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22;

  dest[3][0] = a30;
  dest[3][1] = a31;
  dest[3][2] = a32;
  dest[3][3] = a33;
#endif
}

/*!
 * @brief inverse orthonormal rotation + translation matrix (ridig-body)
 *
 * @code
 * X = | R  T |   X' = | R' -R'T |
 *     | 0  1 |        | 0     1 |
 * @endcode
 *
 * @param[in,out]  mat  matrix
 */
CGLM_INLINE
void
glm_inv_tr(mat4 mat) {
#if defined(__wasm__) && defined(__wasm_simd128__)
  glm_inv_tr_wasm(mat);
#elif defined( __SSE__ ) || defined( __SSE2__ )
  glm_inv_tr_sse2(mat);
#elif defined(CGLM_NEON_FP)
  glm_inv_tr_neon(mat);
#else
  CGLM_ALIGN_MAT mat3 r;
  CGLM_ALIGN(8)  vec3 t;

  /* rotate */
  glm_mat4_pick3t(mat, r);
  glm_mat4_ins3(r, mat);

  /* translate */
  glm_mat3_mulv(r, mat[3], t);
  glm_vec3_negate(t);
  glm_vec3_copy(t, mat[3]);
#endif
}

#endif /* cglm_affine_mat_h */